As one part of ongoing program assessment at Eastern Washington University, each department is asked to report on assessment results for each program for at least one Student Learning Outcome this year. Use this electronic file to report on your program assessment for AY 2010-11, and please submit it to both your Dean and to Academic Affairs (SHW 220) by Nov. 1, 2011. The following definitions explain the assessment information you’ll enter in the table below:

1. **Student Learning Outcome:** The student performance or learning objective as published either in the catalog, the AIEA assessment data portal, or elsewhere in your department literature.

2. **Strategy or method of measurement:** Mode and process through which student performance data was gathered. Examples: embedded test questions in a course or courses, portfolios, in-class activities, standardized test scores, case studies, analysis of written projects, etc. Additional detailed description could describe the use of rubrics, etc. as part of the assessment process.

3. **Observations gathered from data:** The findings and analysis of those findings from the above strategies.

4. **Actions recommended based on observations:** Course (activities or content) or program changes recommended.

5. **Plan and timeline for taking action:** How the recommended actions will be implemented, and in what timeframe.

6. **Overall evaluation of progress on objective:** The extent to which the student learning outcome is still valid and the assessment of it is producing important and meaningful data.

Please fill out a separate assessment table for each program of study (e.g., one table for BA-Art, another for BAE-Visual Arts, etc.) As needed, add additional rows to the table for each student learning outcome for which you gathered assessment results during 2009-10.
|----------------------------|---------------------------------------|-----------------------------------|---|--|---|
| Understand and apply the mathematical processes of problem solving, reasoning, communicating and connecting; use varied representations to support and deepen mathematical understanding, and embrace technology as an essential tool for teaching and learning mathematics. Specifically: A. Solve a variety set of mathematical problems across various content strands (Patterns, Rates, Algebra, Geometry, and Measurement) | Weekly assignments *Numbers represent the number of weeks students worked on each content strand.
- Patterns: 2
- Rates: 3
- Algebra: 4 (3 from Rates are included)
- Geometry: 2
- Measurement: 1 | Means of students’ performance on weekly assignments on a 4-point scale
- Patterns – 2.7
- Rates – 2.4
- Algebra – 2.7
- Geometry – 2.7
- Measurement – 3.6 | 1. Continue to encourage students to expand and deepen their content knowledge
2. Include arithmetic content strand and help students experience a developmental progress of each of the five implemented content strands from arithmetic | Students’ progress on this object was marginal. We should continue to encourage students to develop persistence and confidence in their problem solving ability. |
| Midterm and Final Exams
*Percent represent the portion of each content strand appeared on the exams.
- Patterns: 17%
- Rates: 18%
- Algebra: 31%
- Geometry: 17%
- Measurement: 17% | | Students’ performance on each content strand appeared on the midterm and final exams.
- Patterns – 65%
- Rates – 68%
- Algebra – 66%
- Geometry – 50%
- Measurement – 53% | | |
| Problems posed during class: Each content strand was dealt with over about 2 weeks. | | Some students showed difficulties advancing arithmetic reasoning to expected level of mathematical reasoning in each content strand. | | | |
|---|---|---|---|---|---|
| B. Develop flexibility in problem solving ability by engaging in multiple ways and means of solving problems. | Connections between - Arithmetic and algebraic reasoning (Focus content areas: Patterns, Rates, and Algebra) - Algebraic and geometric reasoning (Focus content areas: Patterns an Rates) - Geometric and measurement reasoning (Focus content areas: Geometry and Measurement) | 3 students | Means of students’ performance on weekly assignments on a 4-point scale that required connection between - Arithmetic and algebraic reasoning: 2.7 - Algebraic and geometric reasoning: 2.6 - Geometric and measurement reasoning:3.0 | 1. Continue to encourage students to make connections between different content strands. | Students’ progress on this object was generally adequate. We should continue to encourage students to develop persistence and confidence in using different representations, technology and manipulatives for problem solving. |
| B-1. Connection among arithmetic, algebraic, geometric, and measurement reasoning; | Technology and manipulatives - GSP for Rates, Algebra, Geometry, and Measurement - Paper folding for Geometry - Manipulatives for Patterns | Different representations were emphasized and encouraged throughout the course. | Means of students’ performance on weekly assignments on a 4-point scale that required - GSP: 2.6 - Paper folding: 2.9 | 2. Continue to provide students with problems that require different representations and using technology and manipulatives. | |
| B-2. Proficiency with different representations, technology, and hands-on (manipulatives) in solving and communicating their ways of solving problems. | | | Students showed a pretty good progress on representing and communicating their ways of solving problems using different ways of representing ideas. | 3. Continue to help students conceive technology and hands-on activities (manipulatives) as an effective tool for learning as well as teaching. | |